Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement

نویسندگان

  • Xiong Meng
  • Jennifer K. Ryan
چکیده

In this paper, an analysis of the accuracy-enhancement for the discontinuous Galerkin (DG) method applied to one-dimensional scalar nonlinear hyperbolic conservation laws is carried out. This requires analyzing the divided difference of the errors for the DG solution. We therefore first prove that the [Formula: see text]-th order [Formula: see text] divided difference of the DG error in the [Formula: see text] norm is of order [Formula: see text] when upwind fluxes are used, under the condition that [Formula: see text] possesses a uniform positive lower bound. By the duality argument, we then derive superconvergence results of order [Formula: see text] in the negative-order norm, demonstrating that it is possible to extend the Smoothness-Increasing Accuracy-Conserving filter to nonlinear conservation laws to obtain at least [Formula: see text]th order superconvergence for post-processed solutions. As a by-product, for variable coefficient hyperbolic equations, we provide an explicit proof for optimal convergence results of order [Formula: see text] in the [Formula: see text] norm for the divided differences of DG errors and thus [Formula: see text]th order superconvergence in negative-order norm holds. Numerical experiments are given that confirm the theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divided difference estimates and accuracy enhancement of discontinuous Galerkin methods for nonlinear symmetric systems of hyperbolic conservation laws

In this paper, we investigate the accuracy-enhancement for the discontinuous Galerkin (DG) method for solving one-dimensional nonlinear symmetric systems of hyperbolic conservation laws. For nonlinear equations, the divided difference estimate is an important tool that allows for superconvergence of the post-processed solutions in the local L2 norm. Therefore, we first prove that the L2 norm of...

متن کامل

Discontinuous Galerkin method for hyperbolic equations involving δ - functions 1

In this paper, we develop and analyze discontinuous Galerkin (DG) methods to solve hyperbolic equations involving δ-functions. We investigate negative-order norm error estimates for the accuracy of DG approximations to linear hyperbolic conservation laws in one space dimension with singular initial data. We prove that, by using piecewise k-th degree polynomials, at time t, the error in the H(R\...

متن کامل

A Posteriori Analysis of Discontinuous Galerkin Schemes for Systems of Hyperbolic Conservation Laws

Abstract. In this work we construct reliable a posteriori estimates for some discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the relative entropy stability framework. The methodology we use is quite general and allows for a posteriori control of discontinuous Galerkin s...

متن کامل

The Runge–Kutta Discontinuous Galerkin Method for Conservation Laws V

This is the fifth paper in a series in which we construct and study the so-called Runge–Kutta discontinuous Galerkin method for numerically solving hyperbolic conservation laws. In this paper, we extend the method to multidimensional nonlinear systems of conservation laws. The algorithms are described and discussed, including algorithm formulation and practical implementation issues such as the...

متن کامل

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2017